Treatment for the rare genetic disorder MPS VII approved

Last Updated on

November 17, 2017 – The American Food & Drug Administration (FDA) just approved  Vestronidase alfa-vjb (Mepsevii),  the first treatment for pediatric and adult patients with the inherited metabolic condition called mucopolysaccharidosis type VII (MPS VII), also known as Sly syndrome. MPS VII is an extremely rare, progressive condition that affects most tissues and organs.

Courageous young man suffering from Sly syndrome

MPS VII is an inherited, rare genetic condition and impacts less than 150 patients worldwide. The features of MPS VII vary widely from patient to patient, but most patients have various skeletal abnormalities that become more pronounced with age, including short stature. Affected individuals can also develop heart valve abnormalities, enlarged liver and spleen, and narrowed airways which can lead to lung infections and trouble breathing. The life expectancy of individuals with MPS VII depends on the severity of symptoms. Some affected individuals do not survive infancy, while others may live into adolescence or adulthood. Heart disease and airway obstruction are major causes of death in people with MPS VII. Affected individuals may have developmental delay and progressive intellectual disability.

MPS VII is a lysosomal storage disorder caused by deficiency of an enzyme called beta-glucuronidase, which causes an abnormal buildup of toxic materials in the body’s cells. Vestronidase alfa-vjb (Mepsevii) is an enzyme replacement therapy that works by replacing the missing enzyme. “This approval underscores the agency’s commitment to making treatments available to patients with rare diseases,” said Julie Beitz, M.D., director of the Office of Drug Evaluation III in the FDA’s Center for Drug Evaluation and Research (CDER). “Prior to today’s approval, patients with this rare, inherited condition had no approved treatment options.”

 

The efficacy of Vestronidase alfa-vjb (Mepsevii) was established in clinical trial and expanded access protocols enrolling a total of 23 patients ranging from 5 months to 25 years of age. Patients received treatment with Vestronidase alfa-vjb (Mepsevii) at doses up to 4 mg/kg once every two weeks for up to 164 weeks. Efficacy was primarily assessed via the six-minute walk test in ten patients who could perform the test. After 24 weeks of treatment, the mean difference in distance walked relative to placebo was 18 meters. Additional follow-up for up to 120 weeks suggested continued improvement in three patients and stabilization in the others. Two patients in the Vestronidase alfa-vjb (Mepsevii) development program experienced marked improvement in pulmonary function. Overall, the results observed would not have been anticipated in the absence of treatment. The effect of Vestronidase alfa-vjb (Mepsevii) on the central nervous system manifestations of MPS VII has not been determined.

Clinical safety data for Vestronidase alfa-vjb (Mepsevii) are very limited, given the very small number of patients. Nevertheless, the most common side effects after treatment with Vestronidase alfa-vjb (Mepsevii) included infusion site reactions, diarrhea, rash and anaphylaxis.

The FDA granted this application Fast Track designation, which seeks to expedite the development and review of drugs that are intended to treat serious conditions where initial evidence showed the potential to address an unmet medical need. Mepsevii also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases. The sponsor is receiving a Rare Pediatric Disease Priority Review Voucher under a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive Priority Review of a subsequent marketing application for a different product. This is the twelfth rare pediatric disease priority review voucher issued by the FDA since the program began.

_____________

 

Tags: , , , , , , ,
About the Author
thassodotcom Ph.D.; Professor in Pharmacology and Toxicology. Senior expert in theragenomic and personalized medicine and individualized drug safety. Senior expert in pharmaco- and toxicogenetics. Senior expert in human safety of drugs, chemicals, environmental pollutants, and dietary ingredients.

Leave a Reply

Optional: Social Subscribe/Login




avatar
  Subscribe  
Notify of

thasso: conditions

thasso: tweets

thasso post: magazine

View my Flipboard Magazine.

thasso: categories

thasso: archives

thasso: simple chat

You must be a registered user to participate in this chat.

  • Descendants of early Europeans and Africans in US carry Native American genetic legacy September 19, 2019
    Many people in the U.S. do not belong to Native American communities but still carry bits of Native American DNA, inherited from European and African ancestors who had children with indigenous individuals during colonization and settlement. In a new study published 19th September in PLOS Genetics, Andrew Conley of the Georgia Institute of Technology and […]
  • IGF1 gene is essential to adult tendon growth, animal study shows September 19, 2019
    Tendon injuries are among the most common injuries seen in athletes at all levels, from weekend warriors to professional basketball players. For those who rupture their tendons, returning to the same level of physical activity they enjoyed before the injury is rare.
  • Researchers create new protocol to improve gene therapy tool production September 19, 2019
    A method to create a faster and lower cost alternative for a gene therapy tool has been developed by Boston University School of Medicine (BUSM) researchers.
  • Genetic variants with possible positive implications for lifestyle September 19, 2019
    A German and British research team lead by Technical University of Munich (TUM) has examined the interplay between genetics, cardiovascular disease and educational attainment in a major population study. Genetic variants which had been linked to educational attainment in other studies were observed in the subjects. The researchers found that these variants also had implications […]
  • Scientists develop new methodology to genetically modify lab mice and human cells September 19, 2019
    A team led by Cedars-Sinai has designed a rapid method to genetically alter laboratory mice and then used this method to produce personalized animal models of pediatric glioma, an aggressive type of malignant brain cancer in children.
Top