The phenotype broker: Blockchain and patient phenotype

Last Updated on

July 26, 2019 – “Blockchains for secure digitized medicine”. This is the title of a very interesting and important article in the Journal of Personalised Medine (JPM) as of May 28, 2019.

Blockchain as an emerging technology (particularly around the hype on Bitcoins) has been gaining in popularity, with more possible applications, outside financial fields)  to utilize the technology in the near future. With the offer of a decentralized, distributed environment without the need for a third trusted party (TTP), blockchains are being used to solve issues in systems that are susceptible to cyberattacks. One possible field that could benefit from blockchains that researchers have been focusing on is healthcare.

Current healthcare information systems face several challenges, such as fragmented patient data, centralized systems which are viewed as single points of attacks, and the lack of patient-oriented services. In the present paper, the investigators investigated and analyzed recent literature related to the use of blockchains to tackle issues found in modern healthcare information systems. This was done to understand issues that researchers commonly focus on, to discover remaining areas of concern in any proposed solution, and to understand the possible directions of the integration of blockchains in healthcare and personalized medicine. Background information regarding blockchains and existing healthcare information systems was reviewed, followed by the methodology used in the preparation of the review, where the research questions to consider were stated. Afterwards, an analysis of the results was provided, concluding with a discussion of the remaining issues that need to be focused on, and how blockchains could benefit the healthcare sector and empower personalized medicine.

According to the review and analysis, security and privacy issues in current healthcare systems need to be addressed in order for patients to have more confidence in the medical professional and their respective clinics. One major area that needs to be focused on is the management of electronic medical records (EMR). Digitalizing medical records has eased their storage and sharing. However, there remain issues around unauthorized access and disclosure, the centralized system that can be seen as a single point of attack, and patient medical information fragmentation in the event that multiple healthcare professionals are visited. Of course, the most important question would be, who is the owner of  the medical data of any one individual patient?

In order to address these concerns, researchers are turning towards blockchains.  Technically seen, over time, there have been several developments to the original blockchain infrastructure so that it could be used for more than just cryptocurrencies and financial transactions. Researchers have begun looking into ways that blockchains can be used to improve current healthcare systems. Due to their immutable, transparent, distributed, and decentralized nature, blockchains can be used as a digital ledger to ease communication between patients, caretakers, and insurance companies. Patient data can also be stored in a single file, making it comprehensive and giving caretakers a better overview of the health history of the patient. Moreover, each single piece of medical information of an individual patient could be “individualized”, that is, patients could determine who is authorised to see the information and what for. They could even allocate price tags to such information.

A review of several published proposals for the inclusion of blockchains in healthcare has shown that the digital ledger technology can be used to improve current systems. Data could be distributed and decentralized, preventing it from being lost and allowing it to be recovered in the event of an attack. Audit trails keep track of what transactions and modifications are made to patient records, while notifying all users on the network. Patients will be given more control over who has access to their data by selecting who carries the cryptographic keys required to decrypt and view it.

However, again tonically seen, the sources reviewed in the present article have also mentioned some areas of concern that will need to be addressed, such as issues with scalability. Healthcare systems are expected to handle large amounts of data for a large number of people, and blockchains will need to be able to grow in order to accommodate for such a number to provide seamless service, and exchange of data. End-point security is also a concern, because although blockchains are secure, a single node being compromised may affect the entire chain. With the risk of a node being compromised, issues with key generation and replacement will also need to be addressed so that users can return to using the blockchain as soon as possible.

Overall, the integration of blockchains into healthcare infrastructures shows great potential. Continuing research in this area will be beneficial to healthcare providers, patients, and other involved parties such as research institutions and insurance companies. Once the remaining issues with blockchains are overcome, healthcare systems can evolve for everyone’s benefit. Here, we should mention that the referred to article is pretty technically driven, as far as blockchains are concerned as means of holding patient information. What is not addressed at all is the potential  of blockchains as an individualized means of knowledge and/or evidence brokerage. Imagine you are an individual with a certain genotype who carries particular allelic variants who places this genetic background and his individually resulting phenotype into a system like blockchains. In this system, the individual could, as mentioned above, define whether this information is “private” or “public”. Since pharmaceutical companies are very hot in getting phenotype data from patients, in order to make sense out of their clinical and pharmacovigilance data, they would pay any price for such information. So, in consequence, thanks to blockchain technologies, every individual / patient could become a broker for his own data, being genetic, being phenotypic, being a combination of the two. So, if ever, blockchains may offer a way to “broker” your personal health- and /or disease- and/or genetic predisposition- data at any price you decide upon to pharmaceutical companies, to regulatory bodies, or any one interested in your phenotype. For some rare gene/phenotype relations, in a very competitive environment, the price tags for such informations may become considerably high and tradeable on a future free health data market (FHDM) just as Bitcoins are in the financial markets.

It is very interesting to note that very much in line with this post here, a recent Medical Press article talked about the fact that more than half of Americans want not only money, but also control in exchange for genetic data that go to research and private companies. As people become more aware of privacy concerns and the ways in which genomic database companies are profiting from their data, their expectations for compensation and control may increase, according to researchers at Penn State and Cornell University who published their work in PLOS ONE. With some adaption, the considerations of these people would perfectly fit in with a blockchain concept as discussed here.

Print Friendly, PDF & Email

 

Tags: , , , , , , , , , , , , , , , , ,
About the Author
Joseph Gut - thasso Ph.D.; Professor in Pharmacology and Toxicology. Senior expert in theragenomic and personalized medicine and individualized drug safety. Senior expert in pharmaco- and toxicogenetics. Senior expert in human safety of drugs, chemicals, environmental pollutants, and dietary ingredients.

Your opinion

Comment

No comments yet

thasso: conditions

thasso: newest tweets

thasso: recent comments

View my Flipboard Magazine.

thasso: categories

thasso: archives

thasso: simple chat

You must be a registered user to participate in this chat.

  • Artificial RNA editing with ADAR for gene therapy July 9, 2020
    Many of the diseases caused by point mutations have no established therapeutic approaches. Prof. Tsukahara and colleagues (Japan Advanced Institute of Science and Technology) are studying a therapeutic method using artificial RNA editing. Artificial site-directed RNA editing is an important technique for modifying genes and ultimately regulating protein function. We are trying to modify the […]
  • Amygdala changes in male patients with schizophrenia and bipolar disorder July 9, 2020
    Researchers at Kumamoto University, Japan have revealed that DNA methylation occurs in the gene that codes serotonin transporter (SERT), a protein that regulates neurotransmitter transmission, in schizophrenia and bipolar patients. Particularly prominent in males and patients with certain genetic polymorphisms, this methylation is inversely correlated with volume of the amygdala in the brain. This work […]
  • Surprisingly many peculiar long introns found in brain genes July 9, 2020
    In a recent study of genes involved in brain functioning, their previously unknown features have been uncovered by bioinformaticians from the Moscow Institute of Physics and Technology and the Institute of Mathematical Problems of Biology, RAS. The findings are reported in PLOS One.
  • Major cause of rare genetic mitochondrial disease identified July 9, 2020
    A cutting-edge study from the Murdoch Children's Research Institute (MCRI) has given hope to families of children born with a fatal heart muscle disease caused by faulty cell machinery.
  • Spatial mapping method pinpoints potential new therapeutic targets in lupus July 8, 2020
    A team of researchers from Children's Hospital of Philadelphia (CHOP) used a new method of pinpointing potential disease-causing changes in the genome to identify two new potential therapeutic targets for lupus, while also paving the way for more accurately identifying disease-causing variations in other autoimmune disorders. The findings were published online in Nature Communications.
  • Jurassic fossils from northeastern China reveal morphological stasis in the catkin-yew July 11, 2020
    Dong and colleagues studied well-preserved plant fossils from the Middle-Late Jurassic Daohugou Bed in eastern Inner Mongolia, northeastern China. These fossils closely resemble the extant catkin-yews Amentotaxus. They provide unequivocal evidence that the catkin-yews have undergone little morphological change over at least ~160 million years. Like ginkgo, the catkin-yews are living fossils that provide an […]
  • Largest study of prostate cancer genomics in Black Americans ids targets for therapies July 10, 2020
    Black men in the United States are known to suffer disproportionately from prostate cancer, but few studies have investigated whether genetic differences in prostate tumors could have anything to do with these health disparities. Now, in the largest study of its kind to date, researchers from Boston University School of Medicine (BUSM), UC San Francisco […]
  • Liquid metal synthesis for better piezoelectrics: Atomically-thin tin-monosulfide July 10, 2020
    An RMIT-UNSW collaboration applies liquid-metal synthesis to piezoelectrics, advancing future flexible, wearable electronics, and biosensors drawing their power from the body's movements.Piezoelectric materials such as atomically-thin tin-monosulfide (SnS) convert mechanical forces or movement into electrical energy. Along with their inherent flexibility, this makes them candidates for flexible nanogenerators in wearable electronics or internal, self-powered biosensors.
  • Mom and baby share 'good bacteria' through breast milk July 10, 2020
    A new study by researchers at the University of British Columbia and the University of Manitoba has found that bacteria are shared and possibly transferred from a mother's milk to her infant's gut, and that breastfeeding directly at the breast best supports this process.
  • Alaskan volcano linked to mysterious period with extreme climate in ancient Rome July 10, 2020
    The cold, famine and unrest in ancient Rome and Egypt after the assassination of Julius Caesar in 44 BCE has long been shrouded in mystery. Now, an international team, including researchers from the University of Copenhagen, has found evidence suggesting that the megaeruption of an Alaskan volcano may be to blame.
Top