The Clinical and Economic Impact of Inaccurate EGFR Mutation Tests in the Treatment of Metastatic Non-Small Cell Lung Cancer

Last Updated on

June 30, 2017 – The below citation from PubMed addresses an vey important issue associated with genetic testing in theragenomic and personalized medicine. It is the question if the genetic test used to stage, classify, or determine treatability of a disease with a given drug is accurate. Notably in the US, there are many targeted therapies that are approved and come with mandatory companion tests that are likewise approved by the regulatory authority and therefore ascertain a certain quality and reproducible accuracy of performance even when carried out in different clinical and/or diagnostic laborarory settings.

In other parts of the world, this may not always be the case. Targeted therapies may be approved and genetic testing may mandatorily be requested in order to apply these therapies to eligilbe patients, but the genetic testing itself may be left to individual clinical or diagnostic laboratories. This in itself may pose a huge risk for misdiagnoses, because genetic test are inherently prone for experimental variations and abberations when perormed in different clinical and/or diagnostic laboratories and may not always return a reliable result. The below authors have attempted to show some of the possible consequences of this situation.


Cheng MM, Palma JF, Scudder S, Poulios N, Liesenfeld O

J Pers Med 2017 Jun;7(3)

PMID: 28657610

Full Text of the Article


Advances in personalized medicine are supported by companion diagnostic molecular tests. Testing accuracy is critical for selecting patients for optimal therapy and reducing treatment-related toxicity. We assessed the clinical and economic impact of inaccurate test results between laboratory developed tests (LDTs) and a US Food and Drug Administration (FDA)-approved test for detection of epidermal growth factor receptor (EGFR) mutations. Using a hypothetical US cohort of newly diagnosed metastatic non-small cell lung cancer (NSCLC) patients and EURTAC (erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer) clinical trial data, we developed a decision analytic model to estimate the probability of misclassification with LDTs compared to a FDA-approved test. We estimated the clinical and economic impact of inaccurate test results by quantifying progression-free and quality-adjusted progression-free life years (PFLYs, QAPFLYs) lost, and costs due to incorrect treatment. The base-case analysis estimated 2.3% (n = 1422) of 60,502 newly diagnosed metastatic NSCLC patients would be misclassified with LDTs compared to 1% (n = 577) with a FDA-approved test. An average of 477 and 194 PFLYs were lost among the misclassified patients tested with LDTs compared to the FDA-approved test, respectively. Aggregate treatment costs for patients tested with LDTs were approximately $7.3 million more than with the FDA-approved test, due to higher drug and adverse event costs among patients incorrectly treated with targeted therapy or chemotherapy, respectively. Invalid tests contributed to greater probability of patient misclassification and incorrect therapy. In conclusion, risks associated with inaccurate EGFR mutation tests pose marked clinical and economic consequences to society. Utilization of molecular diagnostic tests with demonstrated accuracy could help to maximize the potential of personalized medicine.

Tags: , , , , , , , ,
About the Author
thassodotcom Ph.D.; Professor in Pharmacology and Toxicology. Senior expert in theragenomic and personalized medicine and individualized drug safety. Senior expert in pharmaco- and toxicogenetics. Senior expert in human safety of drugs, chemicals, environmental pollutants, and dietary ingredients.

Leave a Reply

Optional: Social Subscribe/Login

Notify of

Does your post mean that patients cannot truly rely on genetic tests performed on them at a given hospital? What should I do as a patient?

thasso: conditions

thasso: tweets

thasso post: magazine

View my Flipboard Magazine.

thasso: categories

thasso: archives

thasso: simple chat

You must be a registered user to participate in this chat.

  • Ancestry launches DNA health service that will compete with 23andMe October 15, 2019
    Ancestry has long appealed to people eager to learn about their family roots. Now the company known for its popular DNA kits is diving into a new area of discovery—health.
  • Improving research with more effective antibodies October 15, 2019
    A new study points to the need for better antibody validation, and outlines a process that other labs can use to make sure the antibodies they work with function properly.
  • New DNA 'clock' could help measure development in young children October 15, 2019
    Scientists have developed a molecular "clock" that could reshape how pediatricians measure and monitor childhood growth and potentially allow for an earlier diagnosis of life-altering development disorders.
  • DNA fracturing rewires gene control in cancer October 15, 2019
    Understanding the mechanisms that mediate widespread DNA damage in the cancer genome is of great interest to cancer physicians and scientists because it may lead to improved treatments and diagnosis. In this study, a multi-institutional team led by researchers at Baylor College of Medicine has brought attention to genomic structural variation as a previously unappreciated […]
  • Most genetic studies use only white participants – this will lead to greater health inequality October 15, 2019
    Few areas of science have seen such a dramatic development in the last decade as genomics. It is now possible to read the genomes of millions of people in so-called genome-wide association studies. These studies have identified thousands of small differences in our genome that are linked to diseases, such as cancer, heart disease and […]